Search results

1 – 5 of 5
Article
Publication date: 1 July 2020

Hadi O. Al Haddad and Elie G. Hantouche

The purpose of this study is to develop an analytical model that is capable of predicting the behavior of shear endplate beam-column assemblies when exposed to fire, taking into…

Abstract

Purpose

The purpose of this study is to develop an analytical model that is capable of predicting the behavior of shear endplate beam-column assemblies when exposed to fire, taking into account the thermal creep effect.

Design/methodology/approach

An analytical model is developed and validated against finite element (FE) models previously validated against experimental tests in the literature. Major material and geometrical parameters are incorporated in the analysis to investigate their influence on the overall response of the shear endplate assembly in fire events.

Findings

The analytical model can predict the induced axial forces and deflections of the assembly. The results show that when creep effect is considered explicitly in the analysis, the beam undergoes excessive deformation. This deformation needs to be taken into account in the design. The results show the significance of thermal creep effect on the behavior of the shear endplate assembly as exposed to various fire scenarios.

Research limitations/implications

However, the user-defined constants of the creep equations cannot be applied to other connection types. These constants are limited to shear endplate connections having the material and geometrical parameters specified in this study.

Originality/value

The importance of the analytical model is that it provides a time-effective, simple and comprehensive technique that can be used as an alternative to the experimental tests and numerical methods. Also, it can be used to develop a design procedure that accounts for the transient thermal creep behavior of steel connections in real fire.

Details

Journal of Structural Fire Engineering, vol. 11 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 8 July 2019

Mohammad Hajjar, Elie Hantouche and Ahmad El Ghor

This study aims to develop a rational model to predict the thermal axial forces developed in shear tab connections with composite beams when subjected to transient-state fire…

Abstract

Purpose

This study aims to develop a rational model to predict the thermal axial forces developed in shear tab connections with composite beams when subjected to transient-state fire temperatures.

Design/methodology/approach

Finite element (FE) models are first developed in ABAQUS and validated against experimental data available in the literature. Second, a parametric study is conducted to identify the major parameters that affect the behavior of shear tab connections with composite beams in the fire. This includes beam length, shear tab thickness, shear tab location, concrete slab thickness, setback distance and partial composite action. A design-oriented model is developed to predict the thermal induced axial forces during the heating and cooling phases of a fire event. The model consists of multi-linear springs that can predict the stiffness and strength of each component of the connection with the composite beam.

Findings

The FE results show that significant thermal axial forces are generated in the composite beam in the fire. This is prominent when the beam bottom flange comes in contact with the column. Fracture at the toe of the welds governs the behavior during the cooling phase in most FE simulations. Also, the rational model is validated against the FE results and is capable of predicting the thermal axial forces developed in shear tab connections with composite beams under different geometrical properties.

Originality/value

The proposed model can predict the thermal axial force demand and can be used in performance-based approaches in future structural fire engineering applications.

Details

Journal of Structural Fire Engineering, vol. 10 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 13 June 2019

Karim Al Khatib, Elie Hantouche and Mohammed Ali Morovat

This study aims to investigate the thermal creep behavior of steel frame assemblies with shear tab connections subjected to transient-state fire temperatures. Different key…

Abstract

Purpose

This study aims to investigate the thermal creep behavior of steel frame assemblies with shear tab connections subjected to transient-state fire temperatures. Different key parameters are investigated to study their effect on the global response of the steel frames in fire.

Design/methodology/approach

Finite element (FE) models of connection assemblies are first analyzed using Abaqus under transient-state temperature conditions and validated against experimental work available in the literature. Upon acquiring the validated conditions, parametric studies are carried out to study the effect of key geometric and heating parameters on the overall response of the frame assembly to fire temperatures. Thermal creep material is also incorporated in the analyses through a user-defined subroutine, and a comparison between including and excluding creep material is illustrated to show the effect of thermal creep on the structural behavior.

Findings

The results reported herein indicate that having a rigid column increases the thermal-induced axial forces, thus increasing the development of thermal creep strains. Slow heating rates can cause axial stress relaxation in the restrained beam and increase the mid-span deflection and consequently the development of beam catenary action. The results also show that reaching higher initial cooling temperatures and having longer cooling phase durations result in more tensile forces at the end of the cooling phase.

Originality/value

Previous studies were limited to isolated steel connections under steady-state conditions. This study investigates the creep behavior of shear tab connection assemblies under transient-state conditions of fire when creep effects are explicitly considered. This can provide a rational and realistic assessment of the steel behavior in fire events.

Details

Journal of Structural Fire Engineering, vol. 10 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 22 June 2017

Sana El Kalash and Elie Hantouche

This paper aims at developing a mechanical-based model for predicting the thermally induced axial forces and rotation of steel top and seat angles connections with and without web…

Abstract

Purpose

This paper aims at developing a mechanical-based model for predicting the thermally induced axial forces and rotation of steel top and seat angles connections with and without web angles subjected to elevated temperatures due to fire. Finite element (FE) simulations and experimental results are used to develop the mechanical model.

Design/methodology/approach

The model incorporates the overall connection and column-beam rotation of key component elements, and includes nonlinear behavior of bolts and base materials at elevated temperatures and some major geometric parameters that impact the behavior of such connections when exposed to fire. This includes load ratio, beam length, angle thickness, and gap distance. The mechanical model consists of multi-linear and nonlinear springs that predict each component stiffness, strength, and rotation.

Findings

The capability of the FE model to predict the strength of top and seat angles under fire loading was validated against full scale tests. Moreover, failure modes, temperature at failure, maximum compressive axial force, maximum rotation, and effect of web angles were all determined in the parametric study. Finally, the proposed mechanical model was validated against experimental results available in the literature and FE simulations developed as a part of this study.

Originality/value

The proposed model provides important insights into fire-induced axial forces and rotations and their implications on the design of steel bolted top and seat angle connections. The originality of the proposed mechanical model is that it requires low computational effort and can be used in more advanced modelling applications for fire analysis and design.

Details

Journal of Structural Fire Engineering, vol. 8 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 20 December 2023

Fadwa M. Al Chamaa, Ahmad El Ghor and Elie Hantouche

This study aims at investigating the effect of bolt hole-making processes on the post-fire behavior of S235 steel plates.

Abstract

Purpose

This study aims at investigating the effect of bolt hole-making processes on the post-fire behavior of S235 steel plates.

Design/methodology/approach

A total of nine steel plates with a single bolt hole are tested. The single bolt holes are fabricated using three different hole-making processes: drilling, waterjet and plasma. Among the nine steel plates, three fabricated specimens are control specimens and are tested at ambient temperature. The six remaining steel plates with a single bolt hole are subjected to a complete heating-cooling cycle and then monotonically loaded until failure. The six fabricated specimens are first heated up to two different temperatures 800 and 925 °C, and then cooled back to the ambient prior to loading.

Findings

The results show that after being exposed to post-fire temperatures (800 and 925 °C), the maximum decrease in strength of the S235 steel plate was 6% (at 925 °C), 14% (at 925 °C) and 22% (at 800 °C) when compared to the results of ambient specimens for waterjet, drilled and plasma bolt holes, respectively. For post-fire temperature tests, drilled and waterjet bolt hole-making processes result in having approximately the same load-displacement response, and both have larger strength and ductility than those obtained using plasma cutting.

Originality/value

This study provides preliminary data to guide the steel designers and fabricators in choosing the most suitable hole-making process for fire applications and to quantify the post-fire reduction in capacity of S235 plates.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 5 of 5